Course 013 Digital Imaging: Image Capturing, Image Sensors – Technologies and Applications

Professor Albert J.P Theuwissen, Harvest Imaging, Belgium, is the instructor for this 4-days course in how to get familiar with Solid-State Imaging and relevant related topics. If "A picture tells more than a thousand words", then imaging was and still is the language of the future. In today's emerging markets of electronic equipment, imaging plays a very important role. The art of imaging and image processing is working its way into the automotive scenes, wearables, IoT, AR/VR and taking on environmental challenges. Solid-state image sensors are present in diverse professional application areas. The major objective of this course is to make the participants familiar with solid-state imaging and the relevant related topics. It will give an in-depth view of the possibilities and limitations of the Image Capturing Technology of today and tomorrow.

Available course dates

This course has no planned course dates.

If you are interested in this course, contact us at cei@cei.se

TECHNOLOGY FOCUS

New developments in CMOS Semiconductor Technology, next to the outstanding imaging performance of solid-state imagers, open up new applications.

Automotive camera systems, improving image quality, and post-capture image processing techniques for digital video signals are important areas where extensive development progress is being made. It is just a matter of time before we will detect single photons with solid-state image sensors, enabling photon counting applications which enable quality images in extremely low light conditions.

In the medical world, new surgery techniques become possible thanks to the powerful characteristics of the image sensors.  Also in the mobile world, the image sensor technology went to a revolution over the last two decades.  For instance, in a today’s smart phone, there are more mm2 of imaging silicon than in a professional broadcast camera.

Instructor

Professor Albert J.P Theuwissen

COURSE CONTENT

The major objective of this course is to make the participants familiar withSolid-State Imaging and the relevant related topics.

It will give an in-depth view of the possibilities and limitations of the image capturing technology of today and tomorrow.

Participants will receive a comprehensive set of course notes. These notes are for participants only and are not for sale.

WHO SHOULD ATTEND

The course is aimed at engineers, scientists and managers with basic knowledge, either theoretical or hands-on, in engineering or physics.

No detailed knowledge of device physics is assumed.

The course is developed to give an in-depth understanding of image capturing to engineers and technicians who are active in the field, and to give those with a theoretical knowledge the opportunity to learn more about the practical issues of the subject.

Much of the course will be of interest also to camera designers through its practical approach.

The course will provide managers and research workers having related experience in industrial, governmental or academic institutions with a valuable update on the latest developments in this fast-moving imaging topics.

More experienced engineers should instead choose our course No. 020 Advanced Course on Imaging Sensor Technology.

Day 1
During the first day of the course, we will focus on the overall image sensor architecture and the various pixels used in CMOS image sensors.  Pixels with 1 transistor, 3 transistors and eventually 4 transistors will be explained.  The pixel discussion will be concluded with the shared pixel concept.

Without any further introduction it should be clear that light sensitivity is an important characteristic of the devices.  In the course, the light sensitivity of the sensors will be explained, and (new) technologies will be introduced on how to further increase the light sensitivity.

Day 2
The second day of the class will be a very “noisy” day.  The full day will be devoted to noise.  Special attention will be paid to temporal noise sources and to fixed-pattern or spatial noise sources.  Once the various noise issues are understood, the focus will shift to how to mitigate (most of) the noise generated by all the various sources. 

The second day will conclude with the perception of noise in images by the human visual system and with an in-depth discussion about signal-to-noise ratio and how manipulation of images will change the signal-to-noise ratio.

Day 3
Once the basics of the image sensors are clear, as well as sensitivity and noise is explained, the time will come to characterize all those parameters.  Characterization of the following parameters will be discussed: temporal noise (total, column, row, pixel), fixed-pattern noise (total, column, row, pixel), dark current, light sensitivity, quantum efficiency, photo-response non-uniformity, image lag.

A very special performance characteristic of an image sensor is the modulation transfer function (MTF).  Why is MTF important, and how is it measured?

Day 4
The last day of the class will be devoted to special architectures that are used to improve the characteristics of the devices.  Examples of these architectures are color image sensors, devices for wide dynamic range, imagers with global shutter pixels, time-of-flight devices, phase-detection auto-focus pixels, …

The training will be concluded with a quick look at datasheets.  What is specified in a data sheet and what is not specified?  What are the traps that are present in a data sheet?

ALL COURSE DATES FOR THE CATEGORY:

Sensors and Digital Imaging

014 Digital Camera Systems

Location: Brussels, Belgium Date: September 29 - October 2, 2026 Duration: 4 days
Instructor: Professor Albert J.P Theuwissen Digital cameras are an essential part of our daily life, e.g. in mobile phones, camcorders, digital photography, cars, and in imaging applications for medical, industrial and broadcasting. This 4-day course is developed to provide theoretical familiarity and hands-on experience with digital cameras and associated topics with focus on the overall system aspects. The complete path will be discussed from “photons in” to “digital numbers out”. The effect of light sources, optics, imagers, defects, and data processing will be covered. Read full course description including course schedule

Early Bird
2 940,00 3 265,00 
Early Bird Price Ends: July 29, 2026

Sensors and Digital Imaging

020 Advanced Course on Image Sensor Technology

Location: Barcelona, Spain Date: April 13 - April 15, 2026 Duration: 3 days
Instructor: Professor Albert J.P Theuwissen Highly sophisticated CMOS image sensors are key components of modern cameras. Technology as well as device architectures are optimized to obtain peak performance of the image sensor and the camera system. The most advanced CMOS image sensors show pixel sizes beyond 1 µm. The imagers demonstrate a light sensitivity comparable to that of the human eye. This course is intended for the specialists in the field. A very good background of digital imaging is needed to get the most out of this course. Read full course description including course schedule

Early Bird
2 280,00 2 535,00 
Early Bird Price Ends: February 13, 2026

Sensors and Digital Imaging

063 Advanced Optical Sensors: From Detectors to ASIC Integration with Edge AI and Functional Safety Considerations

Location: Barcelona, Spain Date: April 13, 2026 - April 16, 2026 Duration: 4 days

Instructor: Dr. Farzad Parsaie

Optical sensors are evolving toward intelligence, downsizing, and multi-functionality, with critical roles in functional safety applications like autonomous driving, industrial automation, and medical diagnostics. Artificial Intelligence (AI) is enhancing optical sensor performance by improving data processing, signal-to-noise ratios, and handling dynamic scenarios, essential for high-fidelity measurements in these fields. This course covers these advancements, from photodetector fundamentals to ASIC integration and interfacing, with a focus on Edge AI and Functional Safety. Read full course description including course schedule

Early Bird
2 940,00 3 265,00 
Early Bird Price Ends: February 13, 2026

Sensors and Digital Imaging

063 Advanced Optical Sensors: From Detectors to ASIC Integration with Edge AI and Functional Safety Considerations

Location: Amersfoort, The Netherlands Date: May 18 - May 21, 2026 Duration: 4 days
Instructor: Dr. Farzad Parsaie Optical sensors are evolving toward intelligence, downsizing, and multi-functionality, with critical roles in functional safety applications like autonomous driving, industrial automation, and medical diagnostics. Artificial Intelligence (AI) is enhancing optical sensor performance by improving data processing, signal-to-noise ratios, and handling dynamic scenarios, essential for high-fidelity measurements in these fields. This course covers these advancements, from photodetector fundamentals to ASIC integration and interfacing, with a focus on Edge AI and Functional Safety. Read full course description including course schedule

Early Bird
2 940,00 3 265,00 
Early Bird Price Ends: March 18, 2026

Sensors and Digital Imaging

063 Advanced Optical Sensors: From Detectors to ASIC Integration with Edge AI and Functional Safety Considerations

Location: Gothenburg, Sweden Date: June 22 - June 25, 2026 Duration: 4 days
Instructor: Dr. Farzad Parsaie Optical sensors are evolving toward intelligence, downsizing, and multi-functionality, with critical roles in functional safety applications like autonomous driving, industrial automation, and medical diagnostics. Artificial Intelligence (AI) is enhancing optical sensor performance by improving data processing, signal-to-noise ratios, and handling dynamic scenarios, essential for high-fidelity measurements in these fields. This course covers these advancements, from photodetector fundamentals to ASIC integration and interfacing, with a focus on Edge AI and Functional Safety. Read full course description including course schedule

Early Bird
2 940,00 3 265,00 
Early Bird Price Ends: April 22, 2026

Sensors and Digital Imaging

835 A 360-degree View of the Sensors for Industrial Applications – Focusing on the Inductive Sensors

Location: Gothenburg, Sweden Date: June 22 - June 26, 2026 Duration: 5 days
Instructor: Dr. Sorin Fericean This 5-day course on how to get familiar and experienced with the extremely large types and versions of sensors for industrial applications.

He is a new instructor of the CEI-Europe and is a professional expert on the subject of design and manufacturing of electronic sensors and ASIC designing, testing, and release for such products. After more than 25 years with one of the 10 global players on the field of industrial sensors – Balluff GmbH Company, Germany – he is currently as a freelancer in his consulting office FerSensC / Leonberg, Germany, carrying out sensor design projects and consulting.

Read full course description including course schedule

Early Bird
3 540,00 3 935,00 
Early Bird Price Ends: April 22, 2026

E-Learning Courses, Sensors and Digital Imaging

E-Course 601 Introduction to Correlated and Uncorrelated Noise in Imagers

Location: E-Course 3 months access

Instructor: Professor Albert J.P Theuwissen

Introduction to Correlated and Uncorrelated Noise in Imagers In the introduction of the course, the difference between Correlated and Uncorrelated Noise will be explained.  In a first instance, one can put all fixed-pattern noise sources or noise in the spatial domain under the header of Correlated Noise, and one can put all temporal noise sources or noise in the time domain under the header of Uncorrelated Noise. The course includes:
  • 42 minutes on-demand video
  • 9 modules
  • 3 months access
This introductory course is the first part of a series of three e-Learning courses about Image Sensors. For effective training benefit, we recommend also attending course 602 Characterization of Noise in Dark and course 603 Characterization of Noise with Light. Get a better price when ordering all three courses: Bundle 601-603 Advanced Course in Image Sensors and Digital Cameras

95,00 
 

E-Learning Courses, Sensors and Digital Imaging

E-Course 602 Characterization of Noise in Dark

Location: E-Course 3 months access

Instructor: Professor Albert J.P Theuwissen

Characterization of Noise in Dark It may sound strange that an image sensor, which is made to capture light, will be characterized first in dark conditions.  But actually this should not really be surprising because noise will first become visible in the darkest parts of an image.  For that reason the dark performance of an image sensor plays crucial role.  It also sets the lower end of the dynamic range…… The course includes:
  • 116 minutes on-demand video
  • 37 modules
  • 3 months access
This course is the second part of a series of three e-Learning courses about Image Sensors. For effective training benefit, we recommend also attending course 601 Introduction to Correlated and Uncorrelated Noise in Imagers and course 603 Characterization of Noise with Light. Get a better price when ordering all three courses: Bundle 601-603 Advanced Course in Image Sensors and Digital Cameras

199,00 
 

E-Learning Courses, Sensors and Digital Imaging

E-Course 603 Characterization of Noise with Light

Location: E-Course 3 months access

Instructor: Professor Albert J.P Theuwissen 

Characterization of Noise with Light In the third and last part of the course, the image sensor will be characterized with light input. First the fixed-pattern noise (= correlated noise) will be measured, and next the temporal noise (= uncorrelated noise) will be characterized. All measurements will be based on an existing camera and with uniform light input. For both noise types, correlated and uncorrelated, some extra statistical operations will allow to split the overall noise characterized into a contribution on row level, on column level and on pixel level. This gives very useful information on where to find the root cause of the noise sources. The course includes:
  • 126 minutes on-demand video
  • 34 modules
  • 3 months access
This course is the third part of a series of three e-Learning courses about Image Sensors. For effective training benefit, we recommend also attending course 601 Introduction to Correlated and Uncorrelated Noise in Imagers and course 602 Characterization of Noise in Dark. Get a better price when ordering all three courses: Bundle 601-603 Advanced Course in Image Sensors and Digital Cameras

199,00 
 

E-Learning Courses, Sensors and Digital Imaging

E-Course Bundle 601-603 Advanced course in image sensors and digital cameras

Location: E-Course 12 months access

Instructor: Professor Albert J.P Theuwissen

The course includes:
  • 284 minutes on-demand video
  • 80 modules
  • 12 months access
Part 1 – Introduction to Correlated and Uncorrelated Noise in Imagers In the introduction of the course, the difference between Correlated and Uncorrelated Noise will be explained.  In a first instance, one can put all fixed-pattern noise sources or noise in the spatial domain under the header of Correlated Noise, and one can put all temporal noise sources or noise in the time domain under the header of Uncorrelated Noise. Part 2 – Characterization of Noise in Dark It may sound strange that an image sensor, which is made to capture light, will be characterized first in dark conditions.  But actually this should not really be surprising because noise will first become visible in the darkest parts of an image.  For that reason the dark performance of an image sensor plays crucial role.  It also sets the lower end of the dynamic range. Part 3 – Characterization of Noise with Light In the third and last part of the course, the image sensor will be characterized with light input. First the fixed-pattern noise (= correlated noise) will be measured, and next the temporal noise (= uncorrelated noise) will be characterized. All measurements will be based on an existing camera and with uniform light input. For both noise types, correlated and uncorrelated, some extra statistical operations will allow to split the overall noise characterized into a contribution on row level, on column level and on pixel level. This gives very useful information on where to find the root cause of the noise sources. Read full course description including course schedule.

Early Bird
450,00 493,00 

Would you like an inhouse course?

Contact Us!

Share your details below, and our team will be in touch as soon as possible.