RF Design and Simulation of Wireless Systems (Id: 15)

Dr. Rowan Gilmore, D.Sc., Adjunct Professor, University of Queensland, and former CEO and Managing Director at EM Solutions Pty Ltd, Australia, is teaching this 5-day course in Design and Simulation of Wireless Systems. Starting from the basics of Communications Theory, this course drills down into the depths of how to construct RF or Microwave Wireless Systems from elemental building blocks. Then, by simulating those circuits and systems from the bottom up, you will gain an understanding of how and why such complex systems can be designed to achieve their optimal communications performance! This course will be useful for engineers working in communications, radar, defense, or new space industries to see the “big picture” in system engineering and to help them perfect their wireless systems.

Available course dates

This course has no planned course dates.

If you are interested in this course, contact us at cei@cei.se

RF & MW Design

015 RF Design and Simulation of Wireless Systems

Location: Gothenburg, Sweden Date: June 22 - June 26, 2026 Duration: 5 days
Instructor: Dr. Rowan Gilmore Starting from the basics of Communications Theory, this course drills down into the depths of how to construct RF or Microwave Wireless Systems from elemental building blocks. Then, by simulating those circuits and systems from the bottom up, you will gain an understanding of how and why such complex systems can be designed to achieve their optimal communications performance! This 5-day course will be useful for engineers working in communications, radar, defense, or new space industries to see the “big picture” in system engineering and to help them perfect their wireless systems. Read full course description including course schedule.

Early Bird
3 540,00 3 935,00 
Early Bird Price Ends: April 22, 2026

TECHNOLOGY FOCUS

Whether used for radar or communications, microwave and millimetre wave radio systems and the signals within them are becoming increasingly complex, with the boundary between digital and analog processing moving ever closer to the antenna.

This course will help you to design and piece together the elemental building blocks of wireless RF systems for optimal performance. Using powerful system simulation tools, you will gain insight into signals in microwave communications systems, how they behave and can become corrupted, and how this impacts overall performance.

In doing this, we will explore both circuits and systems. RF circuits are typically designed to meet power, efficiency, gain, linearity and noise specifications; whereas the Radio System itself is driven by complex modulated signals and must be designed to meet specifications like bit error rate, dynamic range, and minimum detectable signal in the presence of interferers. Between two such radios, the communications link itself must achieve a given bit rate, consume minimal bandwidth, not interfere with other systems, and cover a certain distance.

Through understanding the interactions between circuits, and through detailed simulation of both circuits and systems, and modelling the link, we will understand how to design circuits and systems to meet all levels of performance specification.

Instructor

Dr. Rowan Gilmore

COURSE CONTENT

This 5-day course starts with a review of basic communications theory, and from the top down gradually builds the picture of how a radio (or radar) receiver and transmitter system can be designed to achieve wireless communications.

At the communications link level, we will see how link distance, antenna gain, and signal thresholds can be traded off against each other; and how channel bandwidth improves the link capacity in spite of elevating the receiver noise floor.

We will focus on examining trade-offs in the design of wireless systems themselves, and show how to seamlessly move between both the circuit and system level in radio transceivers and other RF systems. We do this by looking at typical radio architectures, exploring the design compromises, and simulating at both the circuit and system level. The course treats digitally coded signals in RF and IF components, and explores the compromises that are inherent in the design of a radio transceiver. For example, a receiver needs to minimize interference from nearby unwanted stronger signals and allow detection of a desired signal in noise. For the transmitter, avoiding corruption of other signals sharing adjacent spectrum is critical. Filtering might seem to provide the best solution, but we look in more detail at what other complications this creates.

In wireless LAN for instance, we will see how tradeoffs in signal modulation and multiplexing (i.e. OFDM) made to improve performance in some parts of the system, such as multipath reception, have placed tight constraints on other parts of the system, such as the linearity and efficiency of the transmitter. We will interactively simulate a double super-heterodyne, dual-band radio receiver, a direct conversion receiver, and an I-Q modulator and transmitter, as well as various components that make up these systems. This provides the opportunity to explore ‘what if?’ scenarios. We will also get “inside” the circuits themselves for a greater understanding of how each component works, and contributes to overall system performance.

To benefit most, bring your own laptop computer and, prior to attending, obtain a free trial license of the Visual Systems Simulator (VSS) from Cadence.

On completion of the course, you will be:

  • Able to choose a system architecture and specify the best types of circuits to meet given system requirements
  • Fully conversant with how RF system architectures work, how they are implemented, and the challenges to watch for
  • Able to simulate various types of RF and IF systems and circuits, and model component interactions
  • Familiar with microwave and RF subsystems such as amplifiers, mixers, and oscillators
  • Familiar with the physical layer specifications of an RF wireless system, and understand how the key system parameters relate to RF hardware and the communications link itself
  • Able to understand and write critical RF specifications for wireless communications systems
  • Comfortable with reading integrated circuit data sheets for wireless systems, their architecture, and specifications

WHO SHOULD ATTEND

This course begins with a revision of communications and is suitable even for those new to system design. It will be most helpful for engineers with some background in electronic circuits already, but who may be wishing to move into microwave system design, or for those who wish to become systems engineers.

The course is suitable for engineering managers, design engineers, and experienced test and production engineers. Course participants will most likely work for systems integrators, prime contractors, telcos, defence organisations, or in emerging ‘new space’ industries.

Past participants who have benefitted most are those who arrive with an area of detailed expertise and leave with a much broader appreciation of microwave systems.

Day 1

Radio Systems and Digital Communications

We start at the top, by reviewing digital wireless communications and a variety of modulation formats, and the tradeoffs between capacity, bandwidth, signal power, and noise. 

  • Revision of Communication and Information Theory Principles
  • Coding and Modulation Formats
  • Baseband Filtering and Impact on Signal Constellation

We then look at the elemental building blocks that make up a system – amplification; frequency generation; frequency translation; and filtering, and see how these can be assembled in typical receiver and transmitter architectures to achieve communications functionality.

  • Typical Receiver System Architectures – Direct Conversion, Superheterodyne, Dual Conversion Superheterodyne

Day 2

Today we consider a simplified form of the air-interface specification for a common RF system. This describes the overall radio system requirements and enables multiple system operators to co-exist and interoperate. We will define and examine the key system parameters that have to be measured – parameters such as noise, distortion, sensitivity, selectivity, and interference. We also examine how the IF frequency is chosen. 

Characterization of Receivers

  • Noise in Receivers
  • Selectivity, Sensitivity and Minimum Detectable Signal
  • Nonlinearities and Third-Order Intermodulation Distortion
  • Reception in the Presence of Interferers
  • Dynamic Range and How to Improve It with AGC

Characterization of Transmitters

  • Power and Harmonic Distortion
  • Spurious Products
  • ACPR, Spectral Regrowth and Linearity with Different Modulation Formats
  • Efficiency

Frequency Selection

  • The Image Frequency
  • Choosing the Correct Intermediate Frequency

Day 3

Today we will see how system performance parameters can be met by assembling a number of components. We will turn to their data sheets to discover how each is characterized, and examine the tradeoffs involved in selecting them. We will extract key defining features that describe the behaviour of each circuit, and then simulate both the component and the system in the systems simulator. 

Systems Simulation – Behavioral Modeling

Simulation of a Dual-band CDMA Superhet Radio Receiver

  • Spreadsheet-based Linear Systems Analysis
  • Calculation of Sensitivity and Dynamic Range
  • Systems Simulation to Compare with Linear Analysis
  • Using AGC to Increase the Dynamic Range
  • Effect of Changing the Gain, Intercept Point, and Filtering

We now start to explore how the key RF functions of amplification, frequency synthesis (oscillation), and frequency translation (mixing) are achieved at the circuit level. We begin with various ways to change frequencies.

Revision of some RF Basics

Mixers

  • Spurious Analysis
  • Image Reject and Single Sideband Mixers
  • I-Q Modulators and the Importance of Quadrature
  • Basics of Mixer Design and typical mixer problems

Day 4

Today we continue the detailed design process and explore some of the key tradeoffs in design, for example, between the power, efficiency, and linearity in a transmitter, and how to model these tradeoffs. We will focus on discrete design and review some IC designs of frequency generators (oscillators) and signal amplifers.

 Oscillators

  • Basic Concepts of Oscillator Design
  • Deriving the VCO Tuning Curve and Explaining Mode Hopping
  • Phase Noise in Oscillators and its Impact on Communications Systems
  • Calculating Allowable Phase Noise from System Specifications

Power Amplifiers

  • Design Tradeoffs between Linearity, Power, and Efficiency
  • Classes of Amplifier Operation
  • Simulation of Spectral Regrowth with Different Modulation Formats

Day 5

Finally, we look at putting everything together, including the modelling of a complete communications link. We will consider a variety of challenges facing the systems designer; we examine some ‘real’ air interface specifications, and we work an example of the complete design process, from air interface specification through to circuit design.

The Link Budget

  • Modelling a communications link and understanding the tradeoffs
  • Characterising a receiver by G/T and a transmitter by its EIRP – and understanding why these measures are useful

Noise in more detail

  • Reconciling the treatment of noise – terrestrial communications and space communications

Simulation of a Direct Conversion Receiver

  • Trade-off between Modulation Scheme, Data Rate, RF Bandwidth, Channel Filter, Power, Noise, Phase Noise, and Bit-Error Rate

Review of some technical papers

  • Design Considerations of Typical Wireless GaAs and CMOS Chip Sets

ALL COURSE DATES FOR THE CATEGORY: ,

RF & MW Design

007 Behavioral Modeling and Digital Predistortion of RF Power Amplifiers

Location: Gothenburg, Sweden Date: June 22 - June 24, 2026 Duration: 3 days
Instructor: Dr. John Wood This 3-day course that explains nonlinear behavior of RF power amplifiers, and developing general modeling techniques to describe the nonlinearities and memory effects. Linearization of power amplifiers has become an essential requirement since the introduction of 3G wireless communications systems. With 5G about to make its mark with massive MIMO, multi-band, and millimetre-wave systems, bringing a number of new challenges for PA linearization. Come and find out about the fundamentals of these techniques and what is required for the next generation. Read full course description including course schedule

Early Bird
2 280,00 2 535,00 
Early Bird Price Ends: April 22, 2026

RF & MW Design

008 Advanced RF Power Amplifier Techniques for Modern Wireless and Microwave Systems

Location: Barcelona, Spain
Date: April 13 - April 17, 2026
Duration: 5 days

Instructors: Professsor Dr. Steve C. Cripps, Dr. Jeff Powell and Dr. Roberto Quaglia

In any system, the power amplifier is a critical component. It is typically the most costly single item and consumes most of the supply power. Knowledge of the possibilities for trading power per unit cost with efficiency and linearity often forms the basis for the entire system architecture design. This 5-day course deals with the theory and design of RF Power Amplifiers for wireless, satcom, and microwave applications and features in-depth treatment of PA design, PA modes, envelope power management, and non-linear effects.

Read full course description including course schedule.

Early Bird
3 540,00 3 935,00 
Early Bird Price Ends: March 13, 2026

RF & MW Design

015 RF Design and Simulation of Wireless Systems

Location: Gothenburg, Sweden Date: June 22 - June 26, 2026 Duration: 5 days
Instructor: Dr. Rowan Gilmore Starting from the basics of Communications Theory, this course drills down into the depths of how to construct RF or Microwave Wireless Systems from elemental building blocks. Then, by simulating those circuits and systems from the bottom up, you will gain an understanding of how and why such complex systems can be designed to achieve their optimal communications performance! This 5-day course will be useful for engineers working in communications, radar, defense, or new space industries to see the “big picture” in system engineering and to help them perfect their wireless systems. Read full course description including course schedule.

Early Bird
3 540,00 3 935,00 
Early Bird Price Ends: April 22, 2026

RF & MW Design

026 Essentials of Radio Communications Systems

Location: Barcelona, Spain Date: April 13 – April 15, 2026 Duration: 3 days
Instructor: Dr. Richard G. Ranson

The advent of 5G and the technology spin-offs along the way have re-invigorated developments in all radio systems. They have produced new levels of sophistication as well as RF ICs for complex functions which amalgamate analogue/digital circuit ideas as well as sophisticated signalling and protocol layers.

This comprehensive course, from an established expert and IEEE life fellow, gives a thorough view of all key elements of receivers and transmitters, from circuit blocks through the system level to network concepts. 

Read full course description including course schedule

Early Bird
2 280,00 2 535,00 
Early Bird Price Ends: February 13, 2026

RF & MW Design

082 5G and Beyond Wireless Communication System Design

Location: Barcelona, Spain Date: April 13 - April 15, 2026 Duration: 3 days
Instructor: Professor Djuradj Budimir This 3-day course with insight into the 5G and Beyond wireless communication system design from a system point of view.  Designers will be familiarised with the latest development of 5G and Beyond wireless communication systems and different approaches that are used in their analysis. They will understand application in systems such as 5G and beyond mobile wireless systems, and wireless RF and micro-/mm-wave circuit and system design. The aim of this course is to provide a thorough understanding of principles, techniques and the state-of-art of the RF and micro-/mm-wave circuit and 5G and Beyond wireless communication system design. Demonstration some of available CAD software packages (e.g. EPFIL, ADS, emSonnet, Matlab, and CST) will be used to illustrate the performance of design circuits. Read full course description including course schedule

Early Bird
2 280,00 2 535,00 
Early Bird Price Ends: February 13, 2026

RF & MW Design

086 RF Component and System Measurements

Location: Amersfoort, The Netherlands Date: May 18 - May 22, 2026 Duration: 5 days
Instructor: Dr. Lutz Konstroffer This 5-day course will familiarize the participants with distinctive features and tools of RF and microwave techniques, such as features of resonant circuits, distortion and noise problems, reflection and matching, the S-parameters, and the handy Smith Chart tool. This course will familiarize the participants with distinctive features and tools of RF and microwave techniques, such as features of resonant circuits, distortion and noise problems, reflection and matching, the S-parameters, and the handy Smith Chart tool. Read full course description including course schedule.

Early Bird
3 540,00 3 935,00 
Early Bird Price Ends: March 18, 2026

RF & MW Design

812 Practical Antenna Design for Wireless Products

Location: Barcelona, Spain Date: April 13, 2026 - April 14, 2026 Duration: 2 days
Instructor: Mr. Henry Lao To stay competitive in today’s fast evolving business environment, faster time to market is necessary for wireless communication products. Playing a critical role in determining the communication range of products, RF design, particularly the antenna design, becomes crucial to the success of the introduction of new wireless products. Competence in advanced antenna designs can definitely strengthen the competitive edge of RF product design or manufacturing companies. Read full course description including course schedule.

Early Bird
1 560,00 1 735,00 
Early Bird Price Ends: February 13, 2026

RF & MW Design

840 Metal, Plasma and Metamaterial Antennas with Applications to Telecommunications and 5G.

Location: Barcelona, Spain Date: April 13 - 15, 2026 Duration: 3 days
Instructor: Dr. Theodore Anderson This 3-day course will consist of industrial applications of metal antennas, plasma antennas, metamaterial antennas, and plasma metamaterial antennas. This will include industrial applications to telecommunications, 5G, arrays, miniature, and smart antennas. Applications of artificial intelligence will be discussed. Specific antennas to be discussed are smart antennas, satellite antennas, and reflector antennas. reduction of co-site interference, radiation patterns, smart plasma antenna, high power plasma antennas, reflector plasma antennas, pulsing plasma antennas, and how to make a basic plasma antenna. Recommended, but stand-alone courses are: #841 Metal, Plasma, and Metamaterial Antennas with Applications to Radar, Ordnance Mine Detection, and Cell Towers #842 Metal, Plasma, and Metamaterial Antennas with Applications to Plasma MRI/PET and Far-UFC Plasma Antennas to Inactivate Viruses Read full course description including course schedule.

Early Bird
2 280,00 2 535,00 
Early Bird Price Ends: March 13, 2026

RF & MW Design

841 Metal, Plasma, and Metamaterial Antennas with Applications to Radar, Ordnance Mine Detection, and Cell Towers

Location: Amersfoort, The Netherlands Date: May 18 - May 20, 2026 Duration: 3 days
Instructor: Dr. Theodore Anderson This 3-day course will consist of industrial applications of metal antennas, plasma antennas, metamaterial antennas, and plasma metamaterial antennas. This will include industrial applications to Radar, ordnance mine detection,  co-site Interference, various antennas, and cell towers. Applications of artificial intelligence will be discussed. Specific antennas to be discussed are smart antennas, satellite antennas, and reflector antennas. reduction of co-site interference, radiation patterns, smart plasma antenna, high power plasma antennas, reflector plasma antennas, pulsing plasma antennas, and how to make a basic plasma antenna. Recommended, but stand-alone courses are: #840 Metal, Plasma, and Metamaterial Antennas with Applications to Telecommunications and 5G #842 Metal, Plasma, and Metamaterial Antennas with Applications to Plasma MRI/PET and Far-UFC Plasma Antennas to Inactivate Viruses Read full course description including course schedule.

Early Bird
2 280,00 2 535,00 
Early Bird Price Ends: March 18, 2026

Would you like an inhouse course?

Contact Us!

Share your details below, and our team will be in touch as soon as possible.