Course 086 RF Component and System Measurements

Dr Lutz Konstroffer, RF Consult GmbH, Irschenberg, Germany is teaching this 5-day course in RF Component and System Measurements. This course will familiarize the participants with distinctive features and tools of RF and microwave techniques, such as features of resonant circuits, distortion and noise problems, reflection and matching, the S-parameters, and the handy Smith Chart tool. This course will familiarize the participants with distinctive features and tools of RF and microwave techniques, such as features of resonant circuits, distortion and noise problems, reflection and matching, the S-parameters, and the handy Smith Chart tool.

Available course dates

This course has no planned course dates.

If you are interested in this course, contact us at cei@cei.se

RF & MW Design

086 RF Component and System Measurements

Location: Amersfoort, The Netherlands Date: May 18 - May 22, 2026 Duration: 5 days
Instructor: Dr. Lutz Konstroffer This 5-day course will familiarize the participants with distinctive features and tools of RF and microwave techniques, such as features of resonant circuits, distortion and noise problems, reflection and matching, the S-parameters, and the handy Smith Chart tool. This course will familiarize the participants with distinctive features and tools of RF and microwave techniques, such as features of resonant circuits, distortion and noise problems, reflection and matching, the S-parameters, and the handy Smith Chart tool. Read full course description including course schedule.

Early Bird
3 540,00 3 935,00 
Early Bird Price Ends: March 18, 2026

TECHNOLOGY FOCUS

Due to the emergence of the IoT and a wide field of automotive applications, professionals coming from various branches of electronic engineering are faced with the need to become familiar with basics of RF and microwave technology, to design RF transmission systems, to verify the results of their designs by measurements, and to develop production testing setups.

All this requires highly specialized measurement and test techniques. Accordingly, there is a rising demand for engineers and technicians who have a sound knowledge in RF and MW laboratory measurement techniques.

Instructor

Dr. Lutz Konstroffer

COURSE CONTENT

This course will familiarize the participants with distinctive features and tools of RF and microwave techniques, such as features of resonant circuits, distortion and noise problems, reflection and matching, the S-parameters, and the handy Smith Chart tool.

Based on this acquired basic knowledge, we will focus on features and applications of signal generators, spectrum analyzers, network analyzers, and signal analyzers, including the most commonly used accessories.

Practical examples will demonstrate the proper use of RF measurement equipment.

WHO SHOULD ATTEND

This course is aimed at engineers and technicians who want to improve their skills in RF measurements through a practical approach.

Beyond that, especially people who are new in the field of RF will get a thorough introduction into the concepts and tools used in RF technology.

Day 1
The Approach to RF and Microwave Technology

This first lecture will demonstrate typical ways to approach and deal with RF and microwave techniques and problems. We introduce parameters that describe reflections and mismatch and learn how to use the Smith Chart as a powerful tool for impedance transformations.

Building blocks and components are often described by 2-port parameters. We therefore introduce measurement setups for Z-, Y- and S-parameters and learn how to use the parameters to describe the behavior of circuits.

  • Basic Definitions
  • Passive Components at RF
  • Reflection and Matching
  • The Smith Chart
  • 2-Port Parameters

 

Day 2
The Effect of Transmission Lines

Transmission lines form the connections between RF and microwave measurement equipment and the devices under test. Therefore, we need to understand the characteristics of those transmission lines and their possible impact on the measured parameters. Practical situations in measurement setups will be demonstrated and discussed in great detail.

  • Transmission Lines
  • The Characteristic Impedance
  • Transmission Line Input Impedance
  • Transmission Line 

 

Nonlinear Distortions and Noise

Nonlinear distortions and noise limit the performance of any wireless system and in the same way of RF measurement equipment. We will introduce the underlying sources to nonlinear distortion and noise and identify the characteristic parameters to describe those effects.

  • The Generation of Nonlinear Distortions and Noise
  • Noise Figure
  • Intercept Points
  • Phase Noise and Its Characterization

 

RF Laboratory Accessories

RF laboratory accessories are different from those used at lower frequencies and can substantially affect the dependability and accuracy of measurements. We will therefore focus on the use of cables, attenuators, couplers, filters, mixers, and low noise amplifiers in a RF lab.

  • RF Cables
  • RF Connectors and Their Handling
  • Attenuators
  • Combiners and Splitters
  • Directional Couplers
  • Non-Reciprocal Components
  • RF Filters
  • Mixers
  • Low Noise Amplifiers

 

Day 3
RF Signal Generators

Operation principles of synthesizers and modulators used in microwave signal generators will be discussed. The design of generators requires certain compromises and practical generators always have their limitations. Practical hints for the use of signal generators in a measurement system will be revealed.

  • The PLL Synthesizer
  • The Direct Digital Synthesizer
  • Frequency Accuracy and Drift
  • Analog Modulation
  • Digital Modulation
  • I/Q Modulation
  • sr Modulation
  • Correction of the Frequency Deviation Error
  • The Use of Generators in Harmonics and Distortion Measurements


Swept Tuned Spectrum Analyzers

The function of a swept tuned spectrum analyzer will be studied via a practical example. From this we will understand the importance of the spectrum analyzer settings and their impact on the performance. Like any other electronic device, the spectrum analyzer introduces nonlinear distortions and noise to the signal under test. These effects are described in detail. We will learn to find optimum settings to maximize the dynamic range for a given measurement.

  • Basic Function
  • Spectrum Analyzer Settings and Their Impact on the Performance
  • Nonlinear Distortions and Noise
  • The Dynamic Range of a Spectrum Analyzer

 

Day 4
Vector Signal Analyzers

By use of the Fast Fourier Transform (FFT), the vector signal analyzer can perform the same measurements as the swept tuned spectrum analyzer. That includes frequency and level, harmonic distortion, and intercept point measurements. However, the dynamic range is smaller.

As opposed to the swept tuned spectrum analyzer, the vector signal analyzer also provides information on the phase of the signal.

Further, due to the increased Intermediate Frequency (IF) bandwidth, it can display time-dependent signals. The decomposition into in-phase and quadrature components gives information that is necessary if Quadrature Phase Shift Keying (QPSK) or Quadrature Amplitude Modulation (QAM) modulation formats are used.

  • Basic Function
  • Frequency Domain Measurements
  • Time Domain Measurements

 

Network Analyzers

The function of various types of network analyzers will be studied. Systematic errors will be discussed and available methods of their correction introduced. We learn how to use vector network analyzers for reflection and transmission measurements as well as for the measurement of nonlinearity parameters.

  • Network Analyzer Architectures
  • Systematic Errors and Their Impact
  • Calibration of Network Analyzers
  • Deembedding and Port Extension
  • Measurements at Differential Ports
  • Common Mode, Differential Mode and Mixed-mode S Parameters

 

Day 5
Hands-on Exercises

Participants will apply their acquired knowledge on measurements on prepared devices.

 

Spectrum Analyzers

  • Acquiring a Signal, Measuring Power and Frequency
  • Measuring the Occupied Bandwidth of a Modulated Signal
  • Intermodulation Measurements, OIP2 And OIP3
  • Measuring the Signal to Noise Ratio
  • Cold Source Noise Figure Measurement
  • Phase Noise Measurements
  • Frequency versus Time of a FSK Signal
  • Lock Time Estimation on a PLL

 

Network Analyzers

  • Calibration with the Calibration Kit
  • S Parameters of a LNA
  • Measurements on SMD Components
  • Impedance Measurement on a PCB Antenna
  • Swept Power Measurement
  • Measurements on Differential Structures

ALL COURSE DATES FOR THE CATEGORY:

RF & MW Design

007 Behavioral Modeling and Digital Predistortion of RF Power Amplifiers

Location: Gothenburg, Sweden Date: June 22 - June 24, 2026 Duration: 3 days
Instructor: Dr. John Wood This 3-day course that explains nonlinear behavior of RF power amplifiers, and developing general modeling techniques to describe the nonlinearities and memory effects. Linearization of power amplifiers has become an essential requirement since the introduction of 3G wireless communications systems. With 5G about to make its mark with massive MIMO, multi-band, and millimetre-wave systems, bringing a number of new challenges for PA linearization. Come and find out about the fundamentals of these techniques and what is required for the next generation. Read full course description including course schedule

Early Bird
2 280,00 2 535,00 
Early Bird Price Ends: April 22, 2026

RF & MW Design

008 Advanced RF Power Amplifier Techniques for Modern Wireless and Microwave Systems

Location: Barcelona, Spain
Date: April 13 - April 17, 2026
Duration: 5 days

Instructors: Professsor Dr. Steve C. Cripps, Dr. Jeff Powell and Dr. Roberto Quaglia

In any system, the power amplifier is a critical component. It is typically the most costly single item and consumes most of the supply power. Knowledge of the possibilities for trading power per unit cost with efficiency and linearity often forms the basis for the entire system architecture design. This 5-day course deals with the theory and design of RF Power Amplifiers for wireless, satcom, and microwave applications and features in-depth treatment of PA design, PA modes, envelope power management, and non-linear effects.

Read full course description including course schedule.

Early Bird
3 540,00 3 935,00 
Early Bird Price Ends: March 13, 2026

RF & MW Design

015 RF Design and Simulation of Wireless Systems

Location: Gothenburg, Sweden Date: June 22 - June 26, 2026 Duration: 5 days
Instructor: Dr. Rowan Gilmore Starting from the basics of Communications Theory, this course drills down into the depths of how to construct RF or Microwave Wireless Systems from elemental building blocks. Then, by simulating those circuits and systems from the bottom up, you will gain an understanding of how and why such complex systems can be designed to achieve their optimal communications performance! This 5-day course will be useful for engineers working in communications, radar, defense, or new space industries to see the “big picture” in system engineering and to help them perfect their wireless systems. Read full course description including course schedule.

Early Bird
3 540,00 3 935,00 
Early Bird Price Ends: April 22, 2026

RF & MW Design

026 Essentials of Radio Communications Systems

Location: Barcelona, Spain Date: April 13 – April 15, 2026 Duration: 3 days
Instructor: Dr. Richard G. Ranson

The advent of 5G and the technology spin-offs along the way have re-invigorated developments in all radio systems. They have produced new levels of sophistication as well as RF ICs for complex functions which amalgamate analogue/digital circuit ideas as well as sophisticated signalling and protocol layers.

This comprehensive course, from an established expert and IEEE life fellow, gives a thorough view of all key elements of receivers and transmitters, from circuit blocks through the system level to network concepts. 

Read full course description including course schedule

Early Bird
2 280,00 2 535,00 
Early Bird Price Ends: February 13, 2026

RF & MW Design

082 5G and Beyond Wireless Communication System Design

Location: Barcelona, Spain Date: April 13 - April 15, 2026 Duration: 3 days
Instructor: Professor Djuradj Budimir This 3-day course with insight into the 5G and Beyond wireless communication system design from a system point of view.  Designers will be familiarised with the latest development of 5G and Beyond wireless communication systems and different approaches that are used in their analysis. They will understand application in systems such as 5G and beyond mobile wireless systems, and wireless RF and micro-/mm-wave circuit and system design. The aim of this course is to provide a thorough understanding of principles, techniques and the state-of-art of the RF and micro-/mm-wave circuit and 5G and Beyond wireless communication system design. Demonstration some of available CAD software packages (e.g. EPFIL, ADS, emSonnet, Matlab, and CST) will be used to illustrate the performance of design circuits. Read full course description including course schedule

Early Bird
2 280,00 2 535,00 
Early Bird Price Ends: February 13, 2026

RF & MW Design

086 RF Component and System Measurements

Location: Amersfoort, The Netherlands Date: May 18 - May 22, 2026 Duration: 5 days
Instructor: Dr. Lutz Konstroffer This 5-day course will familiarize the participants with distinctive features and tools of RF and microwave techniques, such as features of resonant circuits, distortion and noise problems, reflection and matching, the S-parameters, and the handy Smith Chart tool. This course will familiarize the participants with distinctive features and tools of RF and microwave techniques, such as features of resonant circuits, distortion and noise problems, reflection and matching, the S-parameters, and the handy Smith Chart tool. Read full course description including course schedule.

Early Bird
3 540,00 3 935,00 
Early Bird Price Ends: March 18, 2026

RF & MW Design

812 Practical Antenna Design for Wireless Products

Location: Barcelona, Spain Date: April 13, 2026 - April 14, 2026 Duration: 2 days
Instructor: Mr. Henry Lao To stay competitive in today’s fast evolving business environment, faster time to market is necessary for wireless communication products. Playing a critical role in determining the communication range of products, RF design, particularly the antenna design, becomes crucial to the success of the introduction of new wireless products. Competence in advanced antenna designs can definitely strengthen the competitive edge of RF product design or manufacturing companies. Read full course description including course schedule.

Early Bird
1 560,00 1 735,00 
Early Bird Price Ends: February 13, 2026

RF & MW Design

840 Metal, Plasma and Metamaterial Antennas with Applications to Telecommunications and 5G.

Location: Barcelona, Spain Date: April 13 - 15, 2026 Duration: 3 days
Instructor: Dr. Theodore Anderson This 3-day course will consist of industrial applications of metal antennas, plasma antennas, metamaterial antennas, and plasma metamaterial antennas. This will include industrial applications to telecommunications, 5G, arrays, miniature, and smart antennas. Applications of artificial intelligence will be discussed. Specific antennas to be discussed are smart antennas, satellite antennas, and reflector antennas. reduction of co-site interference, radiation patterns, smart plasma antenna, high power plasma antennas, reflector plasma antennas, pulsing plasma antennas, and how to make a basic plasma antenna. Recommended, but stand-alone courses are: #841 Metal, Plasma, and Metamaterial Antennas with Applications to Radar, Ordnance Mine Detection, and Cell Towers #842 Metal, Plasma, and Metamaterial Antennas with Applications to Plasma MRI/PET and Far-UFC Plasma Antennas to Inactivate Viruses Read full course description including course schedule.

Early Bird
2 280,00 2 535,00 
Early Bird Price Ends: March 13, 2026

RF & MW Design

841 Metal, Plasma, and Metamaterial Antennas with Applications to Radar, Ordnance Mine Detection, and Cell Towers

Location: Amersfoort, The Netherlands Date: May 18 - May 20, 2026 Duration: 3 days
Instructor: Dr. Theodore Anderson This 3-day course will consist of industrial applications of metal antennas, plasma antennas, metamaterial antennas, and plasma metamaterial antennas. This will include industrial applications to Radar, ordnance mine detection,  co-site Interference, various antennas, and cell towers. Applications of artificial intelligence will be discussed. Specific antennas to be discussed are smart antennas, satellite antennas, and reflector antennas. reduction of co-site interference, radiation patterns, smart plasma antenna, high power plasma antennas, reflector plasma antennas, pulsing plasma antennas, and how to make a basic plasma antenna. Recommended, but stand-alone courses are: #840 Metal, Plasma, and Metamaterial Antennas with Applications to Telecommunications and 5G #842 Metal, Plasma, and Metamaterial Antennas with Applications to Plasma MRI/PET and Far-UFC Plasma Antennas to Inactivate Viruses Read full course description including course schedule.

Early Bird
2 280,00 2 535,00 
Early Bird Price Ends: March 18, 2026

RF & MW Design

842 Metal, Plasma, and Metamaterial Antennas with Applications to Plasma MRI/PET and Far-UFC Plasma Antennas to Inactivate Viruses

Location: Gothenburg, Sweden Date: June 22 - June 24, 2026 Duration: 3 days
Instructor: Dr. Theodore Anderson This 3-day course will consist of industrial applications of metal antennas, plasma antennas, metamaterial antennas, and plasma metamaterial antennas. This will include industrial applications to telecommunications, 5 G, arrays, miniature, and smart antennas. Applications of artificial intelligence will be discussed. Specific antennas to be discussed are smart antennas, satellite antennas, and reflector antennas. reduction of co-site interference, radiation patterns, smart plasma antenna, high power plasma antennas, reflector plasma antennas, pulsing plasma antennas, and how to make a basic plasma antenna. Recommended, but stand-alone courses are: #840 Metal, Plasma, and Metamaterial Antennas with Applications to Telecommunications and 5G #841 Metal, Plasma, and Metamaterial Antennas with Applications to Radar, Ordnance Mine Detection, and Cell Towers Read full course description including course schedule.

Early Bird
2 280,00 2 535,00 
Early Bird Price Ends: April 22, 2026

Would you like an inhouse course?

Contact Us!

Share your details below, and our team will be in touch as soon as possible.