

Course Description

Course name Course 880 Wafer Fab Process Technology

Duration 4 days

Format Public classroom or Inhouse event. Not suitable Online

Overview

This intensive 4-day course, instructed by Mr. Jim Fraser, provides a broad overview of silicon wafer fab processing, with in-depth consideration of each of the many wafer fab process techniques – and associated materials and equipment – used to manufacture today's broad range of Si-based microchips.

Technical Focus

The computing power packed into a tiny microchip has exploded over the past several decades. A huge driver has been phenomenally successful in continuous evolution in microchip fabrication equipment, materials and techniques. With each new generation of chips, as devices are scaled ever tinier and performance requirements are ever more demanding, comes a wide range of exciting yet onerous new processing challenges, met head-on by highly motivated scientists and engineers. The course is not geared to a particular technology node; it considers the wide range of fab processes and technology nodes in volume production today.

Course Content

This 4-day course examines the entire wafer fab process, from Fab In through Parametric Test. (It also includes the details of raw Si wafer production.) Each processing technique is studied in turn. A baseline CMOS process flow is studied to introduce critical concepts of process integration. While knowledge of wafer fabrication would certainly be an asset, it is not a prerequisite. Participants will be encouraged to ask questions and participate in brief discussions. The highly detailed course notes provided will minimize the need for notetaking during class and will serve as an excellent useful post-course reference.

Who should attend?

This course is geared to a broad audience. While certainly technical in nature, it aims to also be highly practical, with a minimum of complex math and physics. Past participants have included scientists, engineers and technologists from a wide range of wafer fab equipment and materials supplier companies. Participants from wafer fabs include process engineers, equipment engineers, yield engineers, process integration engineers, product engineers, and technical managers.

Course daily schedule

Daily Schedule

The course material is arranged into 20 modules, five per day:

Module 1: Basics and Fundamentals; Semiconductor Devices and ICs

Initialisms and Acronyms

The Language of Wafer Fab

Brief History (e.g., evolution of electronic devices and ICs; scaling)

Electrical Conductivity

Semiconductor Devices (diodes, resistors, capacitors, transistors, MOSFETs)

Common CMOS Device Problems

Classification of ICs and IC Processes

Integrated Circuit Types

The Global Semiconductor Market

Module 2: Si Crystallinity, Crystal Defects, Crystal Growth

Crystallinity

Crystal Defects

From Sand to Silicon Wafer

Controlling Crystal Defects

Module 3: Baseline CMOS Process Flow

Summary of Wafer Fab Process Techniques

Baseline CMOS Process Flow (step by step)

Process Evolution

Module 4: Doping and Ion Implantation

Doping Fundamentals

Ion Implantation Fundamentals

Dopant Profiles

Crystal Damage & Annealing

Implant Equipment

Process Challenges

Process Monitoring & Characterization

Newer Doping Techniques

Module 5: Thermal Processing

Overview of Thermal Processing

Process Applications of SiO2

Thermal Oxidation

Thermal Diffusion

Thermal Annealing

Thermal Nitridation

Process Control

Thermal Processing Equipment

Newer Process Techniques (e.g., LSA, SPE, PO)

Module 6: Contamination Monitoring and Control

Forms and Effects

Sources and Control Characterization and Measurement

Module 7: Wafer Cleaning and Surface Preparation

Wafer Cleaning Strategies Chemical Cleaning Aqueous Chemical Cleaning Equipment Mechanical Cleaning Newer Techniques (e.g., SCCO2, MD)

Module 8: Thin Films

Definitions
Film Formation Techniques
Important Properties
Metrology

Module 9: Vacuum Fundamentals, Plasma Fundamentals

Gas-Solid/Liquid Interactions
Vacuum Pumps
Wafer Fab Vacuum Systems
Plasma Basics
DC Diode Glow-Discharge Plasma Source
RF and HD Plasma Sources

Module 10: CVD 1: Basics, LPCVD, Epitaxy

CVD Basics
LPCVD Films
LPCVD Nitride/Poly Deposition Equipment
Epi Basics
Epi Process Applications
Epi Deposition Process
Epi Deposition Equipment

Module 11: PVD

PVD (Physical Vapour Deposition) Basics
Sputter Deposition Process
PVD Equipment
Step Coverage and Contact/Via Hole Filling
Metal Film Evaluation
Electrostatic Chucks

Module 12: Lithography 1: Photoresist Processing

Basic Lithography Process Photoresist Materials DUV Photoresist Process Flow Photoresist Processing Systems

Module 13: Lithography 2: Image Formation

Basic Optics Imaging Overview of Imaging Equipment Actinic Illumination Exposure Tools

Module 14: Lithography 3: Registration, Reticles, RETs

Registration Reticles Resolution Enhancement Techniques (RETs) The Evolution of Optical Lithography (EUV)

Module 15: Etch

Etch Terminology
Wet Etch Chemistries and Equipment
Dry Etch Processes
Physics and Chemistry of Plasma Etching
Dry Etch Applications
Dry Etch Equipment

Module 16: CVD 2: PECVD

CVD Basics PECVD Equipment CVD Films Step Coverage

Module 17: CMP

Planarization Basics CMP Basics CMP Processes Process Challenges Equipment Process Control

Module 18: Process Evolution 1 (Bulk Metals, IMDs); Cu ECD

Process Evolution
Al-based Interconnect
The Need for Cu and low-k IMDs
Damascene Process
Cu ECD
Low-k IMDs
Cu Integration Challenges
Next Generation Metals

Module 19: Process Evolution 2: Gate Dielectrics, Silicides, Gates

Process Evolution
Evolution of Gate & Capacitor Dielectrics
Evolution of Silicides
Evolution of Transistor Gates

Module 20: ALD, finFETs, Misc. Processing Techniques

Atomic Layer Deposition (ALD)
Silicon on Insulator (SOI) Technology
Strained Silicon
FinFETs and Other Non-traditional Transistor Designs
3-D NAND Flash Memory
Wafer Fab's Environmental Footprint

Instructor biography

Mr. Jim Frazer

Founder of JFTS, Ottawa, Canada. Mr. Fraser has been a member of the Continuing Education Institute-Europe faculty since 2024.

Jim Fraser received his B.Sc. degree in Physics from McGill University in Montreal, Quebec, Canada. He has 23 years of intimate, hands-on experience in silicon wafer fab process engineering and engineering management at Nortel Networks and STMicroelectronics.

Jim has provided process analysis and documentation services pertaining to reverse engineering of a range of state-of-the-art microprocessors and related microchips at Chipworks (now TechInsights). He has also provided semiconductor patent research support for Chipworks.

Jim's technical training repertoire includes the courses "Silicon Wafer Fabrication" at Algonquin College and "Microelectronic Manufacturing Processes" at the University of Ottawa (both in Ottawa, Canada). More recently, he has delivered a range of silicon wafer fab process technology training courses on contract to the semiconductor industry, in North America, Europe and Asia.

Mr. Fraser has been a member of the Continuing Education Institute-Europe Faculty since 2024.